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Abstract 

We introduce one-parameter groups of transformations that effect wide-ranging 
changes in the rate constants and input/output fluxes of homogeneous chemical 
reactions involving an arbitrary number of species in reactions of zero, first and 
second order. Each one-parameter group is required to convert every solution 
of such elementary rate equations into corresponding solutions of a one-parameter 
family of altered elementary rate equations. The generators of all allowed one- 
parameter groups are obtained for systems with N species using an algorithm 
which exactly determines their action on the rate constants, and either exactly 
determines or systematically approximates their action on the concentrations. 
Compounding the one-parameter groups yields all many-parameter groups of 
smooth time-independent transformations that interconvert elementary rate 
equations and their solutions. 

1. I n t r o d u c t i o n  

The response o f  kinetic systems over extensive regions of  their physical para- 

mete r  space - the space o f  rate constants  and inpu t /ou tpu t  fluxes - is o f  wide interest  

in m a n y  different contexts .  For  example ,  chemical system modell ing can involve 

solving large numbers  o f  coupled rate equations with considerable uncertainties in 

m a n y  values o f  the rate constants.  In other  problems some of  the system parameters  
(e.g. input  fluxes of  chemical species) may  actually be controlled,  but  de'terming 

the op t imum choice o f  paramete r  values would require exploring a large domain o f  
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control-parameter space. Conventional gradient-based local sensitivity analysis tech- 
niques [1] have limited applicability in problems of this type. In addition, fully 
statistically-based approaches [2] do not allow for an analysis of the structure of 
the parameter space. Other methodologies [3] based on repeated sampling of points 
in the parameter space suffer from the same problem and often require an impractical 
amount of computational labor. 

In two previous papers, an alternative approach to sensitivity analysis, using 
Lie transformation groups, was introduced as a method for investigating the conse- 
quaneces of large changes in parameters in kinetic equations [4,5]. The present 
paper extends this effort into the realm of nonlinear kinetics. 

The thrust of  this work is the development of a systematic procedure that 
yields mappings which transform solutions of a system of kinetic equations through 
the hyperdimensional space defined by all rate constants, chemical species, and time. 
Here we will not, however, consider transformations of the time variable. We also do 
not allow the transformed rate constants to be explicit functions of the concentration 
variables. 

The mappings are achieved by the application of operators T(a) = exp(aU)of  
one-parameter groups, where a is a real parameter and U is a group generator of Lie 
type. This gen¢rator is a first-order differential operator which may act on all physical 
parameters and variables of the kinetic system. Symbolizing concentrations by xi and 
rate constants by ku, the generator here takes the form 

u -- Z h,(x, k)a/ax; + Zgù(k)a/akù. (1.1) 

Here, x represents the set of  xi and k represents the set of k u. Henceforth, x , k  
represent vectors with components x i and ku in a Euclidean space of x, k. The operator 
of  finite transformations T(a) = exp (a U) acts as follows: 

On a rate constant k»: 

T(a)kù = kü = K u ( k ; a ) ; K ~ ( k ;  O) = kù . (1.2a) 

On the concentration x i of species i: 

T(a)x  i = 2 i = X i ( x , k ;  a); X i ( x , k ; O  ) = x i . (1.2b) 

Figure 1.1 depicts the type of mapping being considered. 
As indicated in eqs. (1.2), assigning the group parameter a the value zero gives 

the identity transformation. As a is shifted from zero by infinitesimal and then 
finite amounts, changes in k and x develop which are at first infinitesimal, and then 
become increasingly profound. For a fixed value of the parameter a, T(a) acts on 
the moving vector x ( t )  to give the transformed vector 2-(0 = X ( x ( t ) , k ; a ) .  It thus 
transforms the curve in concentration space described by x ( t )  into a new curve depict- 
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Fig. 1.1. The mappings in x, k, t space. The mappings P -+ fi represent  the concen- 

trat ion changes x --, x and the changes in rate constants k --, k-, while the time t is 
held fixed.  As k- is not a funct ion of  x or t, the trajectory P --, P '  is mapped into 

a trajectory P ~ fr '  that  lies in a hyperplane of  constant  k-. 

ing an altered evolution of  chemical concentrations. By changing the value of the 
parameter a, one is able to convert an initial evolution curve into a one-parameter 
famüy of evolution curves. Thus, in fig. 1.1 the upper curve may be considered as 
one member of  a family of  transformed curves, a curve obtained by giving the group 
parameter a specific value. The value of  the group parameter a can be assigned by the 
investigator, but it is neither a rate constant nor a concentration. Its chemical 
significance is determined by the functions Ki and Xu in (1.2). This significance, and 
that of  the generator U, can be assessed by investigating the action of the operator 
of the infinitesimal transformation T(6a). 

Letting a -+ 6a, one has 

exp(aU) -+ exp(6a U) ~ 1 + 6a U .  (1.3) 

Thus, for an infinitesimal transformation, 

Xi = Xi + 6a Ux i = x i + 6 a h i ( x ,  k ) ;  -kls = ku + 6a Uku = kù + 5agù(k). (1.4) 
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Consequently, i fone defines 6x i as  2 i - X i and 6k~ as F u - ku in (1.4) one has 

~ X  i = 8a hi (x ,k) ,  8k~ = 8a gu(k  ) . (1.5) 

It follows that T(6a) changes the concentration xi by an amount 8a h i that may 
depend upon all concentrations x and rate constants k. Similarly, the transformation 
changes the rate constant kù by an amount 6agù that may depend upon all rate 
constants k. As an example, consider the generator 

U = k l l  Xl O/ÕXl + 2~/~kol (1.6) 

and its action on a system involving a single species obeying the rate equation 

dx l[d t  = klo + kl: xl + k m  x~ . (1.7) 

This generator determines a shift in the concentration x~ by an amount 6x: = k:: xl 8a, 
i.e. a shift proportional to the product of the concentration and the second-order rate 
constant. This determines a consequent shift in dx l[d t  by an an:ount d(kl~ Xl 8a)[dt 
= 6a kll dx l /d t .  It also determines a shift 8klo = 26a in the flux km. The generator 
does not affect either kll or  k n l .  

Now, if it were true that the shifted concentration obeyed the same rate 
equation with the shifted value of kl0, the generator (1.6) could be of use in investiga- 
tions of the consequences of changing the rate of supply or removal of the reagent. 
The operator T(a) = exp(aU) could then be used to determine the relation between 
changes in the flux and changes in the concentration x, the extent of both changes 
being determined by the value of the parameter a. However, the U of (1.6) was 
chosen at random and can not be expected at each value of t to convert x( t )  into 
2-(t) that obey the altered rate equation. 

If the U of(1.6)  had the property that UF = 0, where 

F = (k:0 + k:lXl + k m  x~), (1 .S) 

then exp(aU) acting on the right-hand side of (1.7) would leave it unchanged, i.e. not 
change the reaction rate. This is because 

1 + )F  exp(aU)F = (1 +aU + 5 aUaU + + (1.9a) 

would then give 

F + 0 + 0 + + + = F .  (1.9b) 

This is not, however, the restriction we wish to impose. 
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The restrictions we impose upon the T(a), and hence the U's, so as to obtain 
chemical information f rom them are as follows: Each T(a) will be required to have a 
unique action on all k, x, in an elementary kinetic equation_, map contiguous values 
of kù and xi into contiguous values of kù and xi, and give k and 2 that also satisfy 
elementary kinetic equations (cf. section 2 below). In addition, we shall require that 
all the variables a, x, k are real. Taken together, these requirements ensure that the 
transformation T(a) maps solutions of the set of kinetic equations 

d x i / d t  = klo + ki]x j + kiji, x j x  j, (1.10a) 

into solutions of the set of  transformed equations 

d-xi[ d t  = -klo + -ki]2i + ki]]' x ] x ] ,  . (1.lOb) 

They impose restrictions on the form of the generators U sufficient to ensure that 
the U may be determined algorithmically. Because ofthis, one has available a systematic 
method for investigating the manner in which changes in rate constants are associated 
with changes in species concentrations and their time evolution. These restrictions 
are not equivalent to requiring that T(a) leave reaction rates d x i / d t  invariant. 

In the next section, we outline an algorithm for determining the allowed Lie 
generators U and use it to completely determine the tenns in the generators which 
govem the transformation of rate constants of kinetic systems with an arbitrary 
number of species. The remaining terms in the generators, governing the transforma- 
tion of species concentrations, are approximated by power series whose zero-, first-, 
and second-order terms we determine. 

2. 

with 

Der iva t ion  o f  a p p r o x i m a t e  invar iance  ope ra to r s :  The i r  a c t i o n  

Let a set of kinetic equaüons be given as 

~¢ = r ( x , k ) ,  

fr = dx[dt ;  -oo  < t, xi,~ci < oo 

r = ( r , , r 2 , . . )  

r i = kio + k i jx  j + kijj,  x j x  j, , 

i , j , j '=  1 , 2 , . . ;  

j ' > / ,  

-oo < kù < ,o.  (2.1) 
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The evolution operator of this system is then exp(tV),  with 

V = r'Vx,  Vx = (a/axl ,  a l a x 2 , . . ) .  (2.2a) 

That is, 

= e x p ( t V ) x  = X ( x ,  k; t )  (2.2b) 

is the vector that x evolves into after a time interval t. 
Define the operator exp(aU) of a one-parameter Lie group of  transformations 

with real parameter a, ( -oo  < a < ~ )  and generator U of the form 

U =  h . V x  + g . V k  , 

where 

h = (h l , h2 ,  , ,), h i = hio + h q x  i + hiH, x j x  ], +++ 

hüj, = hq7 , etc. 

g" Vk = ~gi , ,  a/aÆim. m = O , L # ' . . .  • 

(2.3) 

Here, and in the remainder of the paper, we use the index m in hirn, kim and gim to 
signify any of the values 0,], ] ] ' . . . .  

The coefficients hirn may in general be allowed to be explicit functions of t, 
x , k .  The coefficients gim are not allowed to depend upon x o r t  hut can depend 
upon k. In ref. [4] it was shown that with these restrictions the action o fexp(aU)  on 
the variables x and k is to give a set of transformed variables 2- and k in whJch the 
have fixed values that do not change with time, while the 2- are, like the x, running 
variables whose values change with time. On transformation, the new values of the kim 
depend upon the old values, but not upon x or t: geometrically, the space of the kim 
is an invariant subspace of the space of x, t ,k.  The kim a r e  allowed to take on any 
real values, and in particular may take on the special value zero without altering the 
general form of the equations given in (2.1). 

It was also shown in ref. [4] that the transformed equations will be of the 
same general form, (2.1), with x replaced by 2- and k replaced by k if and only if 

Ig-  [v,u] +au~at=o. (2.4) 

In this paper, we shall require that the hirn a r e  time independent so that here Ô U/a t is 
zero. lg is then easily seen to be of the form 
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W= w-Vx,  

with 

ù,  = ( w , ,  w 2  . . .  ) 

and 

w/= Wio + wi ix  i + w i ù , x i x  r + + + . (2.5) 

For (2.4) to hold in the time-independent case, it is necessary that each of the 
coefficients Wim vanish identically. For reasons explained below, we shall at first 
approximate h by the terms explicitly listed in (2.3) and only require that the co- 
efficients given explicitly in (2.5) vanish. The resulting quadratic approximation to 
the generators U will later be improved by methods discussed in the succeeding 
paper II. Each Wim in (2.4) is a bilinear function of the kim and hirn , and is linear 
in the gim. Our first problem is to determine the hirn and the gim. 

Before determining the generators in which h is quadratically approximated, 
it is helpful to understand the effect of allowing h to depend upon polynomials of 
arbitrary degree in the xi. To this end, we classify the contributions to U, V, W accord- 
ing to their degree in x. We write 

r = r  ( ° ) + r  O ) + r  (2), (2.6) 

where r (p) is a homogeneous polynomial of  degree p in x, and we wfite 

V(p-  1) = r(p).  Vx 

to indicate that the corresponding contribution to the generator is of one degree less. 
Then 

V = (r (°) + r (1) + r (2)) .V~ = V ( - 0  + V (°) + V (1) 

U = (h  (°) + h (1) + h (2) + h (3) + + + ) .  ~7 x + g .  V k 

= U (-I)  + U (°) + U O) + U (z) + + + g ' V k ,  

W = [U, V] : W (-1) + W (0) + W (1) + W (2) -b + + .  (2.7) 

Now the commutator of U (m) and V (n) is of degree m + n, and the commütator of 
k .  Vg and V (n) is of  degree n. Thus, the vanishing of W requires that 
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0 = iC(-1)= [U(-1),  v(O)] + [u(O), V(-1)] +g.Vk(r(O).Vx) (2.8a) 

0 = iC(o) = [U(-1), VO)] + [u(O), v(O)] + [UO), V(-1)] + g . V k ( r ( 1 ) . V x )  (2.8b) 

0 = W (1) = [U (°) ,V (1)] + [U 0), V (°)] + [ U  (2), V (-1)] + g .  Vk(r(2).Vx) (2.8c) 

0 = iC(2) = [U(1), V(1)] + [U(2), v(O)] + [U(3), V(-1)] (2.8d) 

0 = iC(P) = [U (p - l ) ,  V (1)] -t" [U (p), V (0)] + [U (p+ 1), V(-1)],  p > 3. (2.8e) 

Note that each of these equations stands for a set of separate equations Wim = O, 
where Wim is the coefficient of 

O[Ox i, x/O/Ox i, x i x f  ~/Ox i - - - as  m = 0 , i , # ' . . .  (2.9) 

A key feature of the set of equations Wim = 0 is the fact that their rank is much less 
than their order, so that their solution contains many free parameters. If we do not 
allow cubic and higher degree polynomials in x into U and IC, we find that the equa- 
tions Wim = 0 for W (- 1), iC(o), iC(l) are the set of simultaneous linear equations 

Z 
P 

L 
P 

{hpo kip - hip kpo } + gio = O ,  i = 1, 2 . . . . .  n 

{ hpo(kijp + kipj) + hp]kip - / i p  kp] - (hip ] + hijp)kpo } + gij = 0 

i , ]= 1 , 2 , . . , n  

Z { hpi(kipk + kikp) + hpk(kip] + kijp) - hip(kpjk + kpkj) + (hp]k 
P 

-- (hipk + hikp)kpj - (hip] + hijp)kpk} + gijk + gikj = 0 

+ hpk j) kip 

i , ] , k =  1 , 2 , . . , n .  (2.10) 

In this "quadratic" approximation, each component  of g is uniquely determined 
by a single equation if one chooses r to be a one-term homogeneous polynomial. 
Since the general solution of the equation is an arbitrary linear combination of these 
special solutions, one may make this choice without any loss of generality. In this 
linear combination, the coefficients may be arbitrary functions of the kim. We shall 
say that the generators Um in a collection are "independent" if no linear combina- 
tion of them 

Z C m  Um 
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is identically equal to zero when the coefficients Cm in the linear combination are not 
functions of x. 

The remaining sections of this paper will make use of the quadratic approxi- 
mation to the generators and the approximation to (2.8) obtained by dropping all 
W (p) with p greater than 1. We shall term this twofold approximation the "quadratric 
approximation". In paper II, we will investigate more accurate approximations to the 
generators and show that the quadratic approximation is of great utility. 

In the two-species case, we obtain twelve equations Wim = 0 from the quadratic 
approximation to (2.8). Their general solution is a linear combination of twelve 
independent special solutions. Each special solution fixes a generator U, listed in 
table 2.1. The generators whose h's are of zero or first order in x are exact solutions 
of (2.3). 

Inspecting table 2.1, the reader will note that we have chosen the b]'m to be 
of the form (hefe, giO is the g vector of Ui0, etc.) 

Ui ° = O[Ox i + giO. Vk ' ~,j = Xj~[OX i + gi j .  Vk 

UiH, = x j x j ,  O[Oxi + gijj' Vk . (2.11) 

That is, eqs. (2.10) allow one to choose the action of each Uupon the species concen- 
trations and then determine the action on the kinetic coefficients that is required to 
leave the kinetic equations invariant up through terms quadratic in the concentrations. 

This procedure generalizes to systems of three or more species. As a result, one 
can easily obtain analogously exact and quadratically approximated invariance 
generators U for kinetic systems (2.1) involving an arbitrary number of species. In 
the general case, the generators obtained with the aid of eqs. (2.10) are: 

~'o = a[~xi-  ~ kq~[Okjo- ~ kjmiõ/akjm - 2 Z kjiiO[Okji 
j m ~ i  j 

Uii = x l  O[Ôx i + kio O[Okio + Z kijO[Okij - kiiiO[Okiii 
j ~ i  

j ,m ~ i  jv~i  

j B i  rn,jv~i 

For ] 4: i: 
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u ,  = xja/ax,  + 19o õ[ökio + k]ia[akii + ( k ] / -  ku)a[ök~i 

+ E k/m õ[3kim - E kmiO[Okm/+ k/iiO/Õkiii 
m ¢ i , ]  m g : i  

+ (k/i t - 2km)3[Okiq + (k/t / - kiq)3[3ki// 

+ E k]im3/Okiim + E (kHm-k i im)õ[3k i /m  
m g:i, j  m ¢ i , 1  

-2:E kmii3[3kmi] - ~ kminO[3km]n 
m g: i m ,n  g: i 

Uii i = X1 X i ~[~X i + 2kio ~[~kii  + k i i~[~k i i  i 

+ 2 ~ kij3[ökii j - ~ kjiÔ[3k/i i . 
]-¢i  ] ¢ i  

(2.12) 

For j 4: i: 

Uii ] = xix  j ~[Ox i + klo Ô[äkii + kio O[3ki] + E k ] m  3[3kii m + 2kqO[3ki/] 

+ E kim ~/Oki/m - E kmiO/Okmi] 
m g : i , /  m g : i  

Uqi = x/x] 3[3x i + 2k/o 3[Okü + 2kjiO[~kiq + (2k/j - ku)3[3kq/ 

+2 E k ] m ~ [ ~ k i ] m -  E kmi~[~km]]"  
m g : i , ]  m4=i 

(2.13) 

For " ' " t,],] all different '  

~ , ,  = XjXr~/~x~ + k~o ~/~kù, + kro õ/~k,  + k , ,õ /õk , ,  r 

+ kr/õ/Ok~# + 2~ kjm ~/~k~~ r 
m Cj' 

+ ~ kj,m3[Okqm - ~ kmiö[~km#, (2.14) 
m g=j ra 

In this list, the generators U/o, U/i, and U/j exacfly satisfy the determining eqs. (2.8). 
The generators Uiu, Uuj,, and Uqj, saüsfy (2.8) in quadraüc approximation. 
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3. Finite transformations 

As mentioned earlier, corresponding to each generator U there is an operator 
exp(aU) of finite transformations. One way to determine the effect of  thJs upon 
each variable xi, k u is to expand the exponential in powers of aU, carry out the 
indicated actions and sum the resulting series, which sometimes terminates, has evident 
recursiveness, or is recognizable as the MacLaurin expansion of a simple function. 
Orten, a more practical method is to integrate the set of  equations [4] : 

6xl _ 6x2 _ 6klo _ 6k2o _ 6kll  _ 6k2#' 

hl h 2  " " " glo g2o gll " " " g2H' 
(3.1) 

When the h are o f  the form we have chosen, the necessary integrations can all be 
catv'ied out  analytically. 

Note that the only concentration altered by Tim(a) = exp(aUim) is x i. One 
finds using (3.1): 

T i o ( a ) x  i = x i + a,  T i i ( a ) x  i : Xi  e a ,  

Tq(a)x i = x i + axi, / 4 : i ,  

r . , (a)x  i a«i = xie  , j 4 :  i, 

T i i i ( a ) x  i = xi[(1 - axi) 

T i j j , ( a ) x  i = x i + a x ] x j , ,  i 4: j, j ' .  (3.2) 

b e  effect of each of the finite transformation operators on the kinetic para- 
meters kim a r e  listed in table 2.2. As an example, one finds from table 2.2 that T~0 
acting on klo gives klo = klo - ak11. 

Because Tlo(a) and T2o(b) leave )71 and ~'2 invariant, their action on the 
kinetic equations can be determined by replacing xl by xx + a, or xz by x2 + b, in r 
and determining the coefficients cijj, of the various powers x jx j ,  of the concentrations 
in the equation for }i. Then one finds kijj' = cijj'. Because T~o and 7'2o carry out 
translations of x wl~ile leaving the kinetic equations invariant in the generalized sense 
that the quadratic polynomic form of r is preserved, we shall term them "invariant 
translation" operators. 

In all the generators other than the Uto, the operator ö[3xi is premultiplied 
by either xi or xj .  As a consequence, these generators vanish at the origin of x. 
Because of this, the corresponding operators of  finite transformations T cannot move 
a point at the origin. If one lets U be a linear combination of the generators in table 2.1, 
the finite transformations may be obtained by solving eqs. (3.1) de novo. 

Before concluding this paper, we would call attention to some geometrical 
properties of  our transformations. First note that the evolution generator V is a 
special type of U with g = 0, and that the corresponding operator of finite trans- 
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formations exp(aV) becomes the time evolution operator i f  a is replaced by t. Equa- 
tions (3.1) then simply restate the kinetic equations (2.1). (Of course, V is supposed 
known, while in the analysis just completed we have determined the U's allowed for 
a given V.) Now the operator exp(tV) evolves an initial point into a trajectory in the 
space of x, k without changing the k's. Taken together, all these trajectories constitute 
a flow because the coefficients r i in (2.1) everywhere define a unique infinitesimal 
transformation exp(6tV). Each operator exp(aU)whose U satisfies the determining 
eqs. (2.8) will take a point P on such a trajectory and displace it in a transverse 
direction, by changing both x and k, giving an image point _P. If, with the same value 
of a, exp(aU) acts on another point P' of the original trajectory, it will carry this 

x 2  ¸ 

r 

x I 

Fig. 2.1. Transformation flows eaUx transverse to evolution flows etVx. For each 
fixed value of the group parameter a, the transformation with generator U carries 
the evolving concentrations xi(t) into an altered set of evolving concentrations. The 
transformed concentrations obey a set of elementary kinetic equations with altered 
rate constants. 

into an image point P'. Because exp(6aU) everywhere defines a unique infinitesimal 
transformation and U is not proportional to V, the collection of all these trajectories 
produced by exp(aU) constitutes a flow transverse to the flow produced by the 
evolution operator. As indicated in fig. 2.1, the evolution operator will evolve the 
image point F into a trajectory which will pass through P'  at the same time~ t that 
P is evolved into P'. The proof of thAs observation follows from the fact that in 
deriving (2.8) we have required that ö U/8 t vanishes. Thus, (2.4) becomes 
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[U, V] : 0, (3.3) 

which implies that 

exp(tV) exp(aU) (x, k) = exp(aU) exp(tV) (x, k). (3.4) 

When the generator U only approximately commutes with V, (3.4) will only hold 
approximately and the point obtained by transforming, then evolving, will not 
necessarily coincide with the point obtained by evolving, then transforming. This is 
the case for the generators U i # ,  for example. 

4. Conclus ions  

Inspection of eqs. (2.8) shows that if U (-1) ,  U (°), and U (1) all vanish, then U 
does not act on the rate constants k. Thus, by determining all U with nonvanishing 
U (-1), u(O), U(1) whose T(a)  transform elementar,/rate equations into elementary 
rate equations, we have found all U generating one-parameter groups exp(aU) that 
transform elementary rate equations into elementary rate equations with different 
rate constants. The U/ and the {2/1. have been determined exactly. In the ~ / / ,  the 
functions governing the transformation of species concentrations have been deter- 
mined to second order in the concenträtions, and the functions governing the trans- 
formation of the rate constants have been exactly determined. 

Throughout this and the following paper, two one-parameter groups are 
composed by allowing the second to act on the result obtained from the action of the 
first. Thus, if 

x~ = exp (bU112)x  1 = x 1 exp(bx2) (4.1) 

and 

x '  2 = exp(aU222)xz  = x2 / (1  - ax2) ,  (4.2) 

then the effect of the transformation exp(bUm)  exp(aU222) is to first shift the point 
with coordinates Xl ,  x2 to the point with coordinates ( x l ,  x'2). It then moves this to 
the point with coordinates (x~ = x l  exp(bx '2) ,x '2) .  Written as functions of the co- 
ordinates of the initial point, the coordinates of the final point are therefore 

( x l  e x p ( b { x 2 [ ( 1  - a x 2 ) } ) , x 2 [ ( 1  - ax2)). (4.3) 

From the one-parameter groups with operators T«(ac~) = exp(aa Ua), one may 
construct many-parameter groups Ta~ . . . (aa, a B . . . .  ) = e x p ( a « U a ) e x p ( a ~  U~). . . 
whenever 
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(4.4) 

for all a,~,  u. As all many-parameter groups may be obtained from one-parameter 
groups in this way, it may be concluded that our determination of the generators of 
all one-parameter groups that transform elementary rate equations into different 
elementary rate equations at once determines, exactly or approximately, all generators 
of  many-parameter groups with this property. (In the following paper II, a list of such 
many-parameter groups is given for systems involving two chemical species.) 

To conclude: In this paper, all generators of all one-parameter and all many- 
parameter groups of flows that transform elementary rate equations into elementary 
rate equations with different rate constants have been determined either exactly or 
approximately. A particulady simple generator basis has been chosen and the finite 
transforrnations obtained by exponentiating each generator have been determined. 
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